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The exact theory of linearized water waves in a channel of indefinite length with
bottom corrugations of finite amplitude (Howard & Yu, J. Fluid Mech., vol. 593,
2007, pp. 209–234) is extended to study the higher order Bragg resonances of water
waves occurring when the corrugation wavelength is close to an integer multiple of
half a water wavelength. The resonance tongues (ranges of water-wave frequencies)
are given for these higher order cases. Within a resonance tongue, the wave amplitude
exhibits slow exponential modulation over the corrugations, and slow sinusoidal
modulation occurs outside it. The spatial rate of wave amplitude modulation is
analysed, showing its quantitative dependence on the corrugation height, water-wave
frequency and water depth. The effects of these higher order Bragg resonances are
illustrated using the normal modes of a rectangular tank.
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1. Introduction
The physical idea of Bragg resonance (sometimes also referred to as Bragg reflection

or Bragg scattering) in the case of water waves can be illustrated by considering a
linear water wave propagating over a series of well-submerged small sandbars (i.e.
bottom corrugations) in otherwise constant water depth. Each bar crest can cause a
little bit of reflection, individually negligible. However, when the bar spacing is close
to half the water wavelength, reflections from successive crests are in phase and add
up to form a strong reflected wave at the seaward side of the bar field. Continually
losing energy to the scattered waves as it attempts to transit the bar field, the
incident-wave amplitude decreases shorewards. While it originated in X-ray physics,
the phenomenon in water waves has been well studied, e.g. Davies (1982), Davies
& Heathershaw (1984), Mei (1985), Dalrymple & Kirby (1986), Kirby (1986), Liu
(1987), Mei, Hara & Naciri (1988), Guazzelli, Rey & Belzons (1992), Rey, Guazzelli
& Mei (1996), Liu & Yue (1998), Yu & Mei (2000a) and Alam, Liu & Yue (2009), to
name only a few.

It seems that such accumulative, collaborative effects should also be expected when
the bottom corrugations have a wavelength close to an integer multiple of half a
water wavelength, as in those cases reflections from successive crests are also in
phase. In X-ray studies, the Bragg condition is stated as mλx = 2d sin θ , where m is
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an integer, λx is the X-ray wavelength, d is the spacing of the crystal planes and
θ is the angle between the incident beam and the reflecting planes (Bragg & Bragg
1913). The equivalent (normal incident) wavelength λx/ sin θ gives the maximum
reflection corresponding to m =1, 2, 3, . . . , referred to as the first, second, third, . . .

order reflections. In the water-wave analogue studied here, we consider only normally
incident waves; so the Bragg condition reduces to mλ=2d , with d being identified
as the bottom-corrugation wavelength. For m = 1, this is the well-recognized Bragg
resonance condition for water waves by half-wavelength sandbars in previous studies.

The picture depicted above, of reflections from successive bar crests reinforcing
constructively, is effective to illustrate the general physical idea, but it can sometimes
be misleading that Bragg resonance of water waves is all about incident waves being
reflected, and the reflection coefficient over and upstream of a bar patch is the
necessary measure of the effects of Bragg resonance. Reflections from successive bar
crests occur equally to waves propagating in both directions (in the two-dimensional
situation). Yu & Mei (2000a) have shown, using the asymptotic theory (Mei 1985),
that linear standing waves in front of a vertical impermeable wall (e.g. seawall) can
be altered significantly due to the Bragg resonance by a patch of small-amplitude
sandbars, but reflection coefficients in these cases are everywhere unity due to the
conservation of wave-energy fluxes in the absence of dissipation. The effects on the
waves depend sensitively on the phase of the bottom wave at the location of the wall
(Yu & Mei 2000a).

In our earlier study (Howard & Yu 2007; hereafter referred to as HY07), we
developed an exact theory for linear irrotational motions over a corrugated bottom
which have simple harmonic time dependence. The corrugations used there were
a family characterized by arbitrary wavelength and amplitude parameters, and for
small amplitude, the corrugations are nearly sinusoidal. The precise form is quoted in
§ 2. This choice was motivated mainly by mathematical convenience, but is no more
special than any other two-parameter family. Such motions exist for any frequency
and all of them can be obtained as linear combinations of a basic set of Floquet type
of solutions, as was developed in HY07 and is described in § 2. However, in HY07
we examined in detail frequencies close to the m =1 primary Bragg resonance only,
and made comparisons with the asymptotic theory of Mei (1985), which assumes
small amplitude of both water waves and corrugations, and a small deviation from
the Bragg resonance frequency. We also made an application to examine the normal
modes (i.e. standing waves) of a rectangular tank with a corrugated bottom which
have natural frequencies close to the m =1 Bragg resonance frequency, finding marked
effects on the shape of the eigenfunctions (i.e. surface waveforms) consistent with the
previous study (Yu & Mei 2000a).

The purpose of this paper is to explore the higher order Bragg resonances (occurring
when the corrugation wavelength is close to an integer multiple of half a water
wavelength, i.e. when m > 1) and demonstrate their effects using the normal modes of
a tank with a corrugated bottom. The exact solutions in HY07 could be applied to
many specific problems, other than the normal-mode problem, for instance to finding
the reflection coefficient over a patch of corrugations in an otherwise flat bottom (a
question which admittedly has been the focus or motivation of a number of earlier
publications). However, neither here nor in HY07 do we discuss reflection coefficients.

It is worth emphasizing that nonlinearity of the wave itself is not necessary for
Bragg resonance. Indeed, X-rays are regarded as short electromagnetic waves and so
are described by the completely linear Maxwell equations. Water waves are always
somewhat nonlinear, but many cases of real physical interest can be treated as
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linear, or only weakly nonlinear. In HY07 and the present paper, we take strictly
linear water waves, because we are then able to find exact solutions and remove
the restriction of small-amplitude corrugations. The term ‘higher order’ in this paper
refers back to the original X-ray work. In this sense, the terminology is rather
more consistent with that used by Guazzelli et al. (1992) (but not really the same),
who experimentally demonstrated the existence of the second-order (m = 2) Bragg
resonance. These experiments were carried out with carefully generated linear water
waves over doubly sinusoidal bottoms.

There are certainly interesting phenomena resulting from water-wave nonlinearity
tied in with Bragg resonance, e.g. Liu & Yue (1998) and Alam et al. (2009). In such
studies, the term ‘higher order Bragg resonance’ was used, but it is in the sense
of a perturbation expansion in terms of water wave and/or corrugation amplitude.
Therefore, it has a different meaning from the terminology used in the present paper
and in Guazzelli et al. (1992). It should also be mentioned that the classical wave–wave
interaction theory (e.g. Phillips 1960, 1977) has been used to interpret Bragg resonance
by treating the bottom corrugation as a wave with zero frequency, e.g. Mei (1985)
and Liu & Yue (1998). This interpretation works for obtaining the Bragg condition
for the first order (m =1) and is necessary when the focus is on the nonlinearity of
the free surface as in Liu & Yue (1998). However, Bragg scattering is fundamentally
a linear-wave phenomenon (i.e. superposition of waves), and does not necessarily
follow the framework of nonlinear wave–wave interaction.

This paper is organized as follows. To be self-contained, in § 2 we shall first outline
the formulation of the linear-water-wave problem in an infinite channel with periodic
corrugations on the bottom, presenting some key results necessary for obtaining
solutions for higher order Bragg resonances while referring details to HY07. In § 3,
the solutions of the ranges of frequencies for exponential modulations (resonance
tongues) for m > 1 are discussed, and the similarity of these results to those of
Mathieu’s equation is remarked on. To illustrate the phenomena, the normal modes
affected by higher order Bragg resonances in a rectangular tank are presented in § 4.
Concluding remarks follow in § 5.

2. Linear water waves over bottom corrugations of finite amplitude
Let us consider the linear irrotational motions in an open channel. In the vertical

plane (x, z), where x is along the channel and z points upwards with z = 0 at the
undisturbed water surface, the corrugated bottom is at z = −h + hb, where h is the
mean (constant) water depth and hb is the profile of the bottom corrugations. From
the linear-wave theory, the velocity potential φ(x, z, t) satisfies

∇2φ = 0 for − h + hb � z � 0, −∞ <x < ∞, (2.1)

φz = φxhb,x at z = −h + hb, (2.2)

φtt + gφz =0 at z = 0. (2.3)

Following HY07, we shall take the corrugation profile to be

hb = εh cos 2ξ, where ξ − εkBh coth (2kBh) sin 2ξ = kBx. (2.4)

The corrugations are not exactly sinusoidal, but strictly periodic with a wavenumber
2kB , where kB is the water wavenumber corresponding to the primary Bragg resonance
frequency ωB , i.e.

ω2
B = gkB tanh kBh. (2.5)
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Figure 1. Profiles of bottom corrugations for different values of amplitude ε. kBh = 0.5;
thus, ε∗ = 0.7616. · · · · · ·, ε = 0.1ε∗; – – –, ε = 0.5ε∗; ——, ε = 1.0ε∗.

For small corrugation amplitude ε, hb � εh cos 2kBx; as ε increases, the corrugations
become increasingly cusp-like (see figure 1). The slope of the corrugation crests
becomes infinite as ε → ε∗, where

ε∗ = tanh 2kBh/(2kBh). (2.6)

We do not restrict ourselves to corrugations of infinitesimal amplitude; however, we
do require ε < ε∗ so that the corrugation profile is single-valued. Since ε∗ < 1, the
corrugation crests do not penetrate the free surface. As in HY07, we use a conformal
map, i.e.

kBx = ξ − εb sin 2ξ cosh 2η, kBz = η − εb cos 2ξ sinh 2η, (2.7a, b)

where

b = kBh/ sinh (2kBh). (2.8)

This maps the undisturbed free surface z = 0 onto η = 0 and the bottom z = −h + hb

onto η = − kBh, making the actual flow domain a strip on the mapped plane.

2.1. Floquet solutions

For a periodic motion with simple harmonic time dependence, we set φ = ϕ(ξ, η)e−iωt +
c.c., where ω is the angular frequency. The solution of ϕ can be constructed as
superpositions of Floquet solutions, which have the form of a periodic function of ξ

multiplied by an exponential in ξ , i.e.

ϕ = eµξ

∞∑
n = −∞

Dne
inξ cosh [(n − iµ) (η + kBh)]

cosh [(n − iµ) kBh]
. (2.9)

The Fourier coefficients Dn satisfy the recurrence relationship

LnDn =Dn−2 + Dn+2, (2.10)

Ln : = − (εbλ)−1 {(n − iµ) tanh [(n − iµ) kBh] − λ} , (2.11)

where

λ= ω2/gkB (2.12)

is a dimensionless measure of angular frequency. The three-term recursion (2.10)
comes from the free-surface boundary condition (2.3) after transforming to the (ξ, η)
plane. The Floquet exponent µ is complex in general. The representation of (2.9)
using even n is not coupled with that using odd n, and without any loss of generality
we can require −1 < Imµ � 1 (cf. HY07). Equations (2.9)–(2.11) can be solved using
continued fractions.
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For any given frequency ω, there are two Floquet solutions whose linear
combinations are analogous to the linear combinations of the left-going and right-
going propagating waves on a flat bottom. (The Floquet solutions are not individually
analogous to either of the propagating waves; cf. HY07.) Corresponding to the
frequency ω, there are also two families of Floquet solutions, each of which has
infinite numbers. The Floquet exponents are real and rather close to the appropriate
exponents of the two families of evanescent modes for the flat-bottom channel (i.e. the
roots ±κn of the equation ω2 = −gκn tan κnh). These evanescent modes do not have
direct analogues in the asymptotic theory (Mei 1985), because they are not slowly
varying in x, even for small-amplitude corrugations. They did, however, appear in the
pioneering paper of Davies & Heathershaw (1984), which dealt with scattering of a
plane water wave by a finite patch of corrugations. They solved it quite completely
within the scope of regular perturbation theory, by a Fourier transform method.
Davies & Heathershaw referred to these evanescent waves as ‘trapped waves’, located
at and near the ends of the corrugation patch.

The Floquet exponents are determined by a continued fraction relation, analogous
to the dispersion relation for water waves over a flat bottom. For mathematical details
we refer to HY07 and we quote here only the key solutions from which extension to
higher order Bragg resonances can be made readily.

2.2. Floquet exponents

For the modes using the representation with odd n in (2.9), the possible Floquet
exponents µ must satisfy

CF1(µ)CF1(−µ) = 1, (2.13)

where the continued fraction CF1(µ) follows the definition

CFj (µ) =
1

Lj (µ) − 1

Lj+2(µ) − 1

Lj+4(µ) − · · ·

, j = 1, 2, 3, . . . . (2.14)

For the modes using the representation with even n in (2.9), the possible Floquet
exponents µ must satisfy

L0(µ) = CF2(µ) + CF2(−µ). (2.15)

We note that Lj (−µ) = L−j (µ) and CFj (−µ) = CF−j (µ).
Either representation, with even or odd n in (2.9), can be used to construct the

solution of a mode (propagating or evanescent wave). However, one representation
may be more convenient than the other, depending on the modes considered. For
example, in examining the primary Bragg resonance, HY07 found that it is convenient
to use the odd representations for the propagating modes whose frequencies are close
to the Bragg resonance ωB . From (2.13), the Floquet exponents are determined, which
are real for the exponentially modulated waves and pure imaginary for sinusoidally
modulated waves. The corresponding evanescent modes, when represented using
even n, have a sequence of real Floquet exponents µ1, µ2, . . . (and their negatives
−µ1, −µ2, . . .), which can be readily computed from (2.15). The continued fractions
are calculated following the usual algorithm outlined in HY07.
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3. Resonance tongues for propagating modes
For corrugations of wavenumber 2kB , we define the Bragg resonance water

wavenumbers as

kBm = mkB, m =1, 2, 3, . . . , (3.1)

and the corresponding Bragg resonance frequencies as

ω2
Bm = gkBλBm, λBm = m tanhmkBh, m =1, 2, 3, . . . . (3.2)

Bragg resonance occurs when the water wavenumber k � kBm, i.e. when m/2 water
wavelength is close to the corrugation wavelength. Specifically, in certain ranges
of frequencies, which depend on the corrugation amplitude and are near a Bragg
resonance frequency, the Floquet exponents for the propagating modes are real (i.e.
a positive µ and its opposite). These are waves of exponential modulation over
the corrugations. These ranges of frequencies for exponential modulation are called
resonance tongues. Outside a resonance tongue (still sufficiently close to the Bragg
resonance frequency ωBm), the Floquet exponents are opposite imaginary numbers,
and the wave amplitudes exhibit slow oscillatory modulation as the waves transit the
corrugations. For primary Bragg resonance (m = 1), kB1 = kB and ωB1 =ωB . The second
subscript will therefore be suppressed when referring to the primary Bragg resonance
frequency and the wavenumber. Obviously, ωBm increases with m, and higher order
Bragg resonances are important to higher frequency modes (with shorter wavelengths).

For propagating modes of frequency close to the mth Bragg resonance, it is
expected that the Floquet solutions will resemble the flat-bottom propagating modes
with wavenumbers near kBm, and so the dominant Fourier coefficients in (2.9) should
be Dm and D−m. Thus, when m is odd, e.g. the primary and tertiary Bragg resonances,
the representation with odd n is more convenient. When m is even, on the other hand,
the representation with even n is preferred. Consequently, we determine the Floquet
exponents µ for the propagating modes using (2.13) when m is odd and using (2.15)
when m is even. In all cases, for evanescent waves the representation with even n

is always preferred, the D0 term in the Fourier series always being important. The
Floquet exponents for evanescent waves are not small even for small ε.

For ω sufficiently close to ωB , HY07 found that (2.13) indeed has pure real solutions
of µ for 0 <ε � ε∗. As ω moves away from ωB , becoming either smaller or greater, the
Floquet exponent µ approaches zero and then becomes pure imaginary, corresponding
to the waves of sinusoidal modulation outside the resonance tongue. The lower and
upper frequencies corresponding to µ = 0, i.e. ωc− and ωc+, define the boundaries of
the resonance tongue. These features of Floquet exponents will be similarly retained
for m > 1 when the wave frequency ω is close to ωBm. However, for m > 1 directly
solving (2.13) or (2.15) presents numerical difficulty. For the mth Bragg resonance, as
ε → 0, λ → λBm. Recall that ω/ωBm = (λ/λBm)1/2. From (2.11), Lm → 0 as ω → ωBm.
Lm is one of the partial denominators of the continued fraction CFm, which makes
CFm singular for the solutions of µ sought as ε → 0. Appropriate re-arrangements
of (2.13) and (2.15) are needed to avoid direct calculation of the ‘troubling’ continued
fractions as follows.

For secondary Bragg resonance (m =2), we rewrite (2.15) by expanding CF2 in
terms of CF4, i.e.

L0(µ) [L2(µ) − CF4(µ)] [L2(−µ) − CF4(−µ)]

= L2(−µ) − CF4(−µ) + L2(µ) − CF4(µ). (3.3)
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This form is well behaved numerically close to ωB2, and is used to determine µ

for the propagating modes for m =2. Equation (2.15) is also the basic condition for
determining µ for quaternary Bragg resonance (m =4). As ω → ωB4, CF4 becomes
singular. One shall then rewrite (3.3) further, expanding CF4 in terms of L4 and
CF6 to obtain the appropriate form for m =4. The mathematics is tedious, but
straightforward. The details are omitted here for brevity. For tertiary Bragg resonance
(m =3), we shall rewrite (2.13), to avoid direct calculation of CF3(µ), as follows:

[L1(µ)L1(−µ) − 1] [L3(µ) − CF5(µ)] [L3(−µ) − CF5(−µ)]

= L1(−µ) [L3(−µ) − CF5(−µ)] + L1(µ) [L3(µ) − CF5(µ)] − 1. (3.4)

This is used to solve for µ for the propagating modes close to ωB3. The process just
outlined can, in theory, be continued to deal with even higher values of m. However,
as will be seen in § 3.2, the effects of Bragg resonance become increasingly weaker as
m gets higher since the waves become increasingly shorter. The practical interest of
these much higher order resonances may be limited. In (3.3) and (3.4), the continued
fractions are evaluated using the usual algorithm.

We shall present and discuss in § 3.2 the numerical results of resonance tongues,
making comparisons. For small ε, approximate solutions can be obtained analytically
by applying the perturbation analysis to (2.13) and (2.15). These perturbation solutions
explicitly demonstrate the dependence of resonance tongues on corrugation amplitude
ε as m increases. They also provide a check on the numerical results. We thus present
these perturbation solutions in the next section, and then proceed to the numerical
results.

3.1. Small ε behaviour

First consider the case m = 2. Also λB2 = 2 tanh 2kBh. As ω → ωB2, λ → λB2. From
(2.11), L0(µ) ∼ (εb)−1, where b is defined in (2.8). For (2.15) to have a solution as ε → 0
and µ → 0, CF2(µ) must have the same ε−1 singularity. Since CF2 = [L2 − CF4]

−1

and CF4(µ) = O(εb), we must then conclude that L2(µ) = O(εb). This can be met if
µ approaches zero and λ approaches λB2 in the manner

µ = 0 + (εb)2 A + · · · , λ/λB2 = 1 + (εb)2 C + · · · . (3.5)

Substituting this into (3.3), the leading order perturbation expansion is O(ε) and leads
to

A2
[

1
2

+ 2kBh
/

sinh 4kBh
]2

+
[
C − (1 − λB4/λB2)

−1 − 1
]2

= 1. (3.6)

Since ω/ωB2 = (λ/λB2)
1/2, when µ = 0, A= 0, and we obtain the lower and upper

frequencies at the boundaries of the resonance tongue, i.e.

ωc∓/ωB2 =

√
1 + (εb)2 C∓ + · · ·,

where

C− = (1 − λB4/λB2)
−1 , C+ = 2 + (1 − λB4/λB2)

−1. (3.7)

The separation of ωc− and ωc+ gives the width of the resonance tongue, i.e. for m =2,

(ωc+ − ωc−) /ωB2 = (εb)2. (3.8)

For the case m =3, λB3 = 3 tanh 3kBh. As λ → λB3, L1(µ) ∼ (εb)−1. CF1(µ) and
CF1(−µ) must be of O(1) as µ → 0 in order for (2.13) to have a solution. Since
CF1(µ) = [L1(µ) − CF3(µ)]−1, it is clear that CF3(µ) must have the same (εb)−1
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singularity to balance L1(µ). Consequently, L3(µ) ∼ εb. This indicates that for
small ε,

µ =0 + (εb)3 A + · · · , λ/λB3 = 1 + (εb)2 B + (εb)3 C + · · · . (3.9)

Substituting this into (3.4), we obtain the following at the leading order O (1/εb):

B = (1 − λB1/λB3)
−1 + (1 − λB5/λB3)

−1 , (3.10)

and at O(1),

A2
(

1
3

+ 2kBh
/

sinh 6kBh
)2

+ C2 = (1 − λB1/λB3)
−4 . (3.11)

When µ = 0, A= 0, and the lower and upper frequencies at the boundaries of the
resonance tongue are

ωc∓/ωB3 =

√
1 + (εb)2 B ∓ (εb)3 (1 − λB1/λB3)

−2 + · · ·. (3.12)

The width of the resonance tongue for m = 3 is

(ωc+ − ωc−) /ωB3 = (εb)3 (1 − λB1/λB3)
−2. (3.13)

Similarly, we can obtain the perturbation solution for the case m =4. The algebra
becomes increasingly tedious since higher order expansions in εb must be carried out
to obtain the significant results. We shall omit the details and quote the results as
follows:

µ = 0 + (εb)4 A + · · · , λ/λB4 = 1 + (εb)2 B + (εb)4 C + · · ·, (3.14)

where

B = (1 − λB2/λB4)
−1 + (1 − λB6/λB4)

−1, (3.15)

A2
(

1
4

+ 2kBh
/

sinh 8kBh
)2

+ (C − P)2 = (1 − λB2/λB4)
−4, (3.16)

P = −B3 + 2B2 + 2B (1 − λB2/λB4)
−1 (1 − λB6/λB4)

−1

+ (1 − λB6/λB4)
−2 (1 − λB8/λB4)

−1 + (1 − λB2/λB4)
−2.

The width of the resonance tongue for m = 4 is

(ωc+ − ωc−) /ωB4 = (εb)4 (1 − λB2/λB4)
−2. (3.17)

A few observations can be made immediately. First, the Floquet exponent µ, which
gives the spatial growth (or decay) rate of amplitude modulation, and the width of
the resonance tongue are both of O(εm). For a fixed corrugation amplitude ε, the
range of frequencies for exponential modulation becomes increasingly narrower for
higher order Bragg resonances, and the wave amplitude becomes less variable in
space. This is because the waves for the mth Bragg resonance become shorter as m

increases, and hence are less affected by the bottom topography. Second, the centre
of the resonance tongue is skewed increasingly towards the higher frequency side of
ωBm as ε increases. In fact, when m =3 and m =4, B < 0 for sufficiently small kBmh,
and thus, the Bragg resonance frequency ωBm, as is defined in (3.2), is outside the
resonance tongue, corresponding to a sinusoidal modulation. Third, d/dε (ωc+) and
d/dε (ωc−) are both of O(ε) in all cases for m > 1. Thus, for m > 1, the slopes of the
boundaries of the resonance tongue approach zero as ε → 0 and are equal to zero at
ε = 0, suggesting that the resonance tongue is cusp-like, in the parameter plane ε–ω,
not wedge-like as it is in the case m =1. The cusp becomes sharper as m increases.
As a last remark, the fact that both µ and the width of the resonance tongue are
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Figure 2(a, b). For caption see next page.

of O(εm) indicates that if an asymptotic theory for small-amplitude corrugation is
to be adapted for higher order Bragg resonances, the analysis has to be carried out
to O(εm) to obtain any significant results. As a check, we have indeed extended the
theory in Mei (1985) to the cases m > 1, working, however, in the (ξ , η) plane, and
reproduced the results presented in § 3.1 at the appropriate orders.

3.2. Results

As discussed above, using the appropriate form equivalent to either (2.13) when m

is odd or (2.15) when m is even, one can obtain the Floquet exponents µ for the
propagating modes of both exponential and sinusoidal modulations. In figure 2,
ωc−/ωBm and ωc+/ωBm are plotted against ε for kBmh = 0.2, 0.5 and 1.2. Recall that
ε = a/h, where a is the dimensional corrugation amplitude. ε < ε∗ and ε∗ varies with
kBh. For completeness and for comparison, the primary Bragg resonance (m = 1) is
included.

Comparing with m =1, resonance tongues for m > 1 are, in general, much narrower.
The resonance tongues are indeed cusps at all water depths for m > 1, while they are
approximately wedges for m =1. For small ε, the width of the cusps is proportional
to εm, as indicated by the perturbation solutions in § 3.1. In all cases, including m =1,
for small and moderate water depths the resonance tongues are asymmetric with
respect to the Bragg resonance frequency ωBm, extending considerably more into the
higher frequency side of ωBm. For m = 3 and m =4, ωBm is outside the resonance
tongue unless kBmh or ε is sufficiently large. Given a water depth, say kBmh = 0.5, the
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Figure 2. Graphs of ωc−/ωBm and ωc+/ωBm as functions of ε for water depth: · · · · · ·,
kBmh =0.2; ——, kBmh = 0.5; – – –, kBmh =1.2. (a) Primary Bragg resonance (m= 1);
(b) secondary Bragg resonance (m= 2); (c) tertiary Bragg resonance (m= 3); (d ) quaternary
Bragg resonance (m= 4).

resonance tongue narrows as m increases, for all values of ε, indicating weaker effects
of higher order Bragg resonances. Consider the corrugations of wavenumber 2kB .
The waves affected by the mth Bragg resonance become increasingly shorter than the
corrugation wavelength as m gets greater, even though the relative water depth kBmh

is kept the same. The bottom appears to be increasingly smooth, and further away,
to the waves of interest as m increases, and hence less interaction occurs between
the two. For the same reason, we observe the resonance tongue narrowing when the
water depth increases for a given m.

For propagating modes close to ωBm, the Floquet exponents µ are real inside the
resonance tongue and pure imaginary outside it. Thus, µ2 is convenient for display
both inside (µ2 > 0) and outside (µ2 < 0), as is done in HY07. In figures 3–6, we show
the graphs of µ2 as a function of ω/ωBm for various values of kBmh and ε. For each
case m, the water depths are kBmh = 0.2, 0.5 and 0.9. As indicated in the captions,
somewhat larger values of ε are used for higher m due to the weaker effects of Bragg
resonances. The graphs are generally similar, except for the magnitudes. For m =1,
the maximum real µ occurs at a frequency fairly close to ωB for different values
of ε. For m > 1, this maximum shifts towards higher frequencies as we increase ε,
consistent with the asymmetry of the resonance tongues observed in figure 2.
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Figure 3. Graphs ofµ2 as a function of ω/ωB for primary Bragg resonance (m= 1). (a) kBh =
0.2; (b) kBh = 0.5; (c) kBh = 0.9. For each kBh: ——, ε = 0.1; · · · · · ·, ε = 0.3; – – –, ε =0.5.
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Figure 4. Graphs of µ2 as a function of ω/ωB2 for secondary Bragg resonance (m= 2).
(a) kB2h = 0.2; (b) kB2h = 0.5; (c) kB2h = 0.9. For each kB2h: ——, ε = 0.2; · · · · · ·, ε =0.5;
– – –, ε = 0.7.
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Figure 5. Graphs of µ2 as a function of ω/ωB3 for tertiary Bragg resonance (m= 3).
(a) kB3h = 0.2; (b) kB3h = 0.5; (c) kB3h = 0.9. For each kB3h: ——, ε = 0.5; · · · · · ·, ε = 0.7;
– – –, ε = 0.8.

For exponential modulation, µ gives the amplitude growth (or decay) rate in ξ in the
mapped plane, as well as in kBx in the x–z plane (cf. HY07). To fix the idea, take, for
example, µ = 0.1, which is typical in figures 3–6. This gives an e-folding distance 10/π
corrugation wavelengths, that is the wave amplitude can be amplified (or reduced) by
a factor of e in a distance of approximately three corrugation wavelengths. In terms
of the wave energy density, the factor is e2 � 7.

The set of Floquet solutions, whose existence and construction we have just
described, forms a basis for all solutions of Laplace’s equation satisfying the surface
and bottom boundary conditions and periodic in time with a given frequency. They
can be used to attack different problems involving linear water waves over a finite
number of corrugations, when appropriate end boundary conditions are prescribed.
It should, however, be stressed that the rate of exponential modulation (Floquet
exponent) is determined by the corrugation amplitude, the water-wave frequency and
by the water depth, being independent of the end conditions of a finite corrugation
patch. In § 4, we shall demonstrate the effects of those higher order Bragg resonances
that use the normal modes of a finite channel with vertical ends, as an example.

3.3. Remarks on the similarity to Mathieu’s equation

The standard form of Mathieu’s equation (Abramowitz & Stegun 1964) is

y ′′ + (a − 2q cos 2x) y = 0. (3.18)

Mathieu encountered it while studying the normal modes of an elliptical membrane,
after separation of variables in the Helmholtz equation transformed to elliptical
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Figure 6. Graphs of µ2 as a function of ω/ωB4 for quaternary Bragg resonance (m= 4).
(a) kB4h = 0.2; (b) kB4h = 0.5; (c) kB4h = 0.9. For each kB4h: ——, ε = 0.5; · · · · · ·, ε =0.7;
– – –, ε = 0.8.

coordinates (Mathieu 1868). The relevant solutions in such a case are those periodic in
x and may be regarded as eigenfunctions of (3.18) with periodic boundary conditions.
For q > 0, there are two distinct eigenvalues, a = ar (q) and a = br (q), which merge into
the degenerate eigenvalues ar = r2 (with eigenfunctions cos rx and sin rx) as q → 0.
Graphs of these can be seen in figure 20.1 in Abramowitz & Stegun (1964). They
bear a striking resemblance to the resonance tongue boundaries ωc± in figure 2 in this
paper, which also correspond to periodic solutions. The separation between ar and
br , for small q , is of O(qr ), just as the width of our resonance tongues is of O(εm). In
fact, Mathieu’s equation has Floquet solutions with real exponents between ar and br

and imaginary exponents outside.
These similarities are not an accident. If we look for Floquet solutions of (3.18)

in the form y = eµx
∑∞

−∞ Dne
inx , we find the recurrence L̂nDn = Dn+2 + Dn−2, where

L̂n = q−1[a − (n − iµ)2], just like our recurrence (2.10) with Ln defined in (2.11). For
small kBh, Ln = L̂n if we identify q with εbλ/kBh and a with λ/kBh. Of course, this
small kBh approximation always fails for large enough n, however small kBh might
be, nor do we necessarily want to have small kBh; so the problems are not identical,
but there seems to be a real basis for some similarity. The normal modes we are
studying here cannot be found by the simple separation of variables technique that
applies to those of the elliptical membrane, and we do not have an analogue of the
ordinary differential equation (3.18). However, because the general ideas of Floquet
theory apply to both problems, we do find similar recurrences and similar continued
fractions. We have confirmed that for kBh → 0 the solutions in § 3.1 for small ε indeed
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agree with the results given in chapter 20 in Abramowitz & Stegun (1964) when q

and a are so identified, as mentioned above.
That there is some relationship between water-wave Bragg resonance and Mathieu’s

equation has been noted previously (Davies, Guazzelli & Belzons 1989; Kirby 1989).
With various approximations, but always including small corrugation amplitude,
Mathieu’s equation has been obtained directly from the water-wave Bragg-resonance
problem. As just remarked, it does not seem possible to do this with a finite
corrugation amplitude, but the overall similarity still holds, e.g. the tilting towards
higher frequencies of resonance tongues seen in figure 2 for all m is also found in the
Mathieu equation.

4. Normal modes of a tank with corrugated bottom
A general solution for linearized motion of angular frequency ω is

ϕ = C−ϕ− + C+ϕ+ +
∑

j = 1,K

(C−
j ϕ−

j + C+
j ϕ+

j ), (4.1)

where ϕ± are the Floquet solutions for the two propagating modes, corresponding
to µ and −µ (either real or pure imaginary), and ϕ

±
j are the evanescent modes

corresponding to the sequence of Floquet exponents µj and −µj , j = 1, 2, . . . , for
the same frequency ω. For a normal mode, the coefficients C are to be determined
so that the normal component of velocity vanishes everywhere on each endwall of
the tank. In general, this will require an infinite number of the evanescent waves; in
practice, we have to truncate the series at some finite number K , depending on how
much inaccuracy in satisfying the endwall conditions is regarded as acceptable. A
vertical endwall (x = constant) in the (x, z) variables is usually not vertical in (ξ, η);
it is only where the endwall is located exactly at a corrugation crest or trough that its
image on the mapped plane appears vertical. Because the mapping (2.7) is conformal,
the endwall condition remains that the normal derivative of ϕ is zero, but it must
be applied on the actual image of the wall. Thus, the evanescent waves always seem
to be needed to satisfy the endwall conditions, except for ε = 0. The method for
constructing the normal modes for m =1 is detailed in HY07, and is applicable for
m > 1. We emphasize here those higher frequency normal modes on which the higher
order Bragg resonances have significant effects.

We have examined a number of examples for m =2, 3 and 4, focusing on exponential
modulations. Some are discussed here. Let the total length of the tank be L, and the
two vertical endwalls be at x = x0 and x = L + x0. We define

α = kBx0, −π/2 < α � π/2, (4.2)

β = kBL − Nπ + α, −π/2 � β − α < π/2, (4.3)

where N is the integer number of corrugation wavelengths nearest to the actual length
of the tank. The parameters α and β , respectively, measure the phases of the left and
right endwalls relative to the corrugation crest. For example, if the left endwall is at
a corrugation trough, α = π/2. The choice of N is so made that the normal mode to
be constructed will tend to the Nth mode of the flat bottom case as ε → 0 for the
case m =1 (cf. HY07).

We first show examples with 16 corrugations, i.e. N =16. In figure 7, the profiles of
the surface elevation (at t =0) are shown for secondary Bragg resonance (m = 2). Also
kB2h =0.5 and ε = 0.3 (i.e. ε/ε∗ = 0.3246). For tertiary Bragg resonance (m = 3), the
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Figure 7. The profiles of the surface elevation (at t =0) for secondary Bragg resonance
(m= 2): ——, as a function of ξ ; · · · · · ·, as a function of kBx. Parameters are kB2h = 0.5,
ε = 0.3, N =16. (a) α = π/2, β = 17π/127; (b) α = − π/10, β = −α.
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Figure 8. The profiles of the surface elevation (at t = 0) for tertiary Bragg resonance (m= 3):
——, as a function of ξ ; · · · · · ·, as a function of kBx. Parameters are kB3h =0.5, ε = 0.5, N = 16.
(a) α = π/2, β = 11π/254; (b) α = −π/13, β = −α.

surface profiles are shown in figure 8 for kB3h = 0.5, ε = 0.5 (ε/ε∗ = 0.5184). Examples
for m =4 are shown in figure 9 for kB4h =0.5 and ε =0.5 (ε/ε∗ =0.5104). A few
observations are made as follows.

First, in each case m, appropriate values of α and β can be found such that the
amplitude of surface oscillation increases exponentially and monotonically along the
channel. In figure 7(a), the surface amplitude at the right endwall is approximately
2.77 times than that at the left. For m = 3 and m =4, the effects of Bragg resonance
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Figure 9. The profiles of the surface elevation (at t = 0) for quaternary Bragg resonance
(m= 4): ——, as a function of ξ ; · · · · · ·, as a function of kBx. Parameters are kB4h = 0.5,
ε = 0.5, N = 16. (a) α = π/2, β = 11π/254; (b) α = −π/18, β = −α.

are limited when ε is small due to the narrow width of the resonance tongues.
Nevertheless, with ε = 0.5, the ratio of surface amplitudes at the two ends can be
as large as 4.59 for m =3, kB3h = 0.5 in figure 8(a), and 2.16 for m =4, kB4h = 0.5
in figure 9(a). The three cases just mentioned are also listed in table 1, rows 1–3.
The surface elevation ζ is the eigenvector for eigenvalue ω. For the normal modes
in figures 7(a), 8(a) and 9(a), ω/ωB2 = 0.9987, ω/ωB3 = 1.0199 and ω/ωB4 = 1.0124,
respectively. Note that ωBm is the frequency of the appropriate normal mode for the
flat-bottom case. This is similar to the case m =1 that Bragg resonance mostly affects
the eigenfunction ζ but not the eigenvalue ω.

Second, when β = −α the eigenfunction ζ is symmetric with respect to the centre
of the tank because of the symmetry of the geometry. With appropriate choice of
α for each m, we see in figures 7(b), 8(b) and 9(b) that the surface amplitudes at
the two endwalls are equal and decrease exponentially towards the minimum at the
middle of the tank. For primary Bragg resonance (m = 1), it has been shown that
for exponential modulation the spatial distribution of wave energy density depends
sensitively on the precise positions of the endwalls relative to the corrugation crests
(cf. HY07), confirming the results obtained using the asymptotic theory (Yu & Mei
2000a). This sensitive dependence is still true for higher order Bragg resonances, as
seen from the results in figures 7–9, and in fact becomes more sensitive as m increases.

Third, for m = 3 and m = 4, the surface profiles show long-range exponential
modulation due to Bragg resonances, as well as periodic modulations with a period of
one (when m is even) or two (when m is odd) corrugation wavelengths. In figure 8(a)
for m =3, in addition to the general exponential decrease from right to left, one
notices that every third peak is higher than its two neighbours, and every third
trough is lower than its neighbours. (Half a cycle later, the lower troughs will be
replaced by higher crests, of course.) Similarly, in figure 9(a) for m =4, every other
peak is higher than its neighbours. Since there are 16 corrugations in the tank, in
figure 8(a) the two successive higher peaks are spaced by about two corrugation
wavelengths, and in figure 9(a) they are spaced by about one corrugation wavelength.
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N m kBmh ε ε/ε∗ β aR/aL ω/ωBm

16 2 0.5 0.3 0.3246 17π/127 2.7706 0.9987
16 3 0.5 0.5 0.5184 11π/254 4.5915 1.0199
16 4 0.5 0.5 0.5104 11π/254 2.1602 1.0124
10 2 0.5 0.3 0.3246 14π/127 1.8749 0.9983
10 3 0.5 0.5 0.5184 6π/127 2.6229 1.0214
10 4 0.5 0.5 0.5104 4π/127 1.6354 1.0125
8 2 0.5 0.3 0.3246 12π/127 1.6339 0.9986
8 2 0.5 0.5 0.5410 14π/127 4.3319 1.0043
4 2 0.5 0.5 0.5410 12π/127 2.0944 0.9977
8 3 0.5 0.6 0.6221 6π/127 3.7221 1.0280
6 3 0.5 0.6 0.6221 6π/127 2.7165 1.0309
4 3 0.5 0.6 0.6221 6π/127 2.0233 1.0384
8 4 0.5 0.6 0.6124 6π/127 2.3876 1.0149
6 4 0.5 0.6 0.6124 4π/127 1.9045 1.0182
4 4 0.5 0.6 0.6124 2π/127 1.4404 1.0218
8 2 0.9 0.4 0.5026 16π/127 2.2536 0.9945
8 2 0.9 0.6 0.7539 13π/127 6.6781 1.0056
8 3 0.9 0.5 0.5586 6π/127 2.0299 1.0159
8 3 0.9 0.6 0.6703 5π/127 3.4599 1.0213
8 4 0.9 0.5 0.5330 4π/127 1.4058 1.0052
8 4 0.9 0.6 0.6400 6π/127 2.2021 1.0064
8 2 1.2 0.3 0.4318 12π/127 1.3907 0.9967
8 2 1.2 0.5 0.7197 16π/127 3.0509 0.9948
8 3 1.2 0.4 0.4819 11π/127 1.2471 1.0048
8 3 1.2 0.6 0.7229 7π/127 2.9489 1.0088
8 4 1.2 0.5 0.5586 5π/127 1.3537 0.9997
8 4 1.2 0.6 0.6703 7π/127 2.0816 0.9986

Table 1. The ratio of the eigenfunction at the two endwalls, aR/aL, and the ratio of the
frequency to ωBm for normal modes with exponential modulation. α = π/2 in all examples, i.e.
the left endwall is at a corrugation trough.

This short-range periodic modulation is due to the fact that the bottom corrugation
is a spatial subharmonic of the water waves. The direct interaction of waves with the
bottom, through the quadratic term in the boundary condition (2.2), produces spatial
harmonics lower than the basic water waves, appearing as a subharmonic modulation
of the basic waves. On the boundaries of the resonance tongues, when µ = 0, long-
range exponential modulation disappears and this subharmonic modulation is the
only one present. On the other hand, for m =1 and m =2, the basic wave is the lowest
harmonic in the Fourier series, and the direct interaction with the bottom produces
the higher ones, which are usually regarded as distortions in the basic wave form.

Last, in computing the eigenfunctions, five pairs of evanescent modes have been
used. It is found that these modes do not affect the surface profile significantly, even
in the regions close to the endwalls. In figure 10, we show the normal velocity at the
right endwall for the computed eigenfunction in figure 7(a). For comparison, we also
compute the velocity by deliberately omitting the evanescent modes, using only the
propagating modes. This is included in figure 10. The importance of the evanescent
modes (i.e. fast varying flows) in satisfying the boundary condition is quite obvious.
This is true in all cases for m > 1, consistent with the finding for m =1 in HY07.

Other examples of computed normal modes with exponential modulation are listed
in table 1, for different water depths, corrugation amplitudes and tank lengths. The
ratios of surface amplitudes at the two endwalls are in column 7, showing the
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Figure 10. The normal velocity at the right endwall for the computed eigenfunction in figure
7(a): ——, using five pairs of evanescent modes and two propagating modes; – – –, using only
the two propagating modes.

significance of the Bragg resonance effects. While both shallow water depth and a
large number of corrugations are favourable for Bragg resonance, strong effects can
still be seen in relatively deep waters or with as few as four corrugations.

5. Concluding remarks
Higher order Bragg resonances of water waves have been investigated, extending the

exact solutions of linearized water waves over bottom corrugations of finite amplitude
in HY07. These higher order Bragg resonances occur when the bottom corrugations
have a spacing close to an integer multiple (m > 1) of half a water wavelength. For the
Floquet-type solution, we have found the resonance tongues (ranges of water-wave
frequencies) within which exponentially modulated propagating waves occur. Just
outside a resonance tongue, but still sufficiently close to the mth Bragg resonance,
sinusoidal modulations occur. These resonance tongues are cusps for m > 1 and
wedges for m =1 in the parameter plane of water-wave frequency versus corrugation
amplitude ε, and tilted towards higher frequencies. The width of the cusp is of O(εm)
for small ε. All these properties are similar to those of the Mathieu equation.

To illustrate the effects of these higher order Bragg resonances, we considered the
normal modes of a rectangular tank. We have explored many examples, varying
water depth, the amplitude and the number of bottom corrugations. While the effects
become weaker at the higher order, even at m =4 Bragg resonance can cause enough
modulation of the standing wave that the surface amplitude at one end of the tank
exceeds twice that at the other. This surface amplitude ratio depends sensitively on
the endwall positions relative to the corrugation crests. This dependence, also seen in
the m =1 case in HY07, is consistent with the earlier studies of Bragg scattering by
a finite number of sandbars in front of a (partially) reflective shoreline (Yu & Mei
2000a, b).

The particular bottom profile used in this study does have a Fourier series containing
harmonics cos (2nkBx), n= 1, 2, . . .. However, it should be emphasized that the m > 1
resonances just examined cannot be interpreted as if they were m =1 resonance by the
higher harmonic components of the bottom, as the processes have different behaviour
(see the Appendix). It may be possible for one to imagine that an mth-order resonance
by a periodic bottom is a mixture of different order scattering processes by individual
bottom harmonic components, but it is not clear at all if one can possibly separate,
and hence quantify the contributions of, these individual scattering processes in a
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physically meaningful way. This is because there is no linearity with respect to the
bottom shape, even when the fluid motion is linear: one cannot add a solution for
hb1 = 0.2h cos (2kBx) to one for hb2 = 0.1h cos (4kBx) to get a solution for the profile
hb1 +hb2. The fact that a periodic bottom can be represented by a Fourier series does
not mean that wave scattering can be described as any kind of superposition of that
by some basic set of special bottom shapes like cos (2nkBx). It then seems better to
just treat a periodic bottom with an identified fundamental wavenumber (shortest
spatial period), say 2kB , and examine the properties of water waves of frequencies
close to ω2

Bm = gkBm tanh kBmh, m =1, 2, . . .. The bottom profile given parametrically
by (2.4) appears to be one of the simplest periodic forms for which exact solutions
(neither perturbative nor purely numerical) can be developed, as shown in HY07 and
here.

The Floquet solutions of HY07, further developed here, can be used to study
different problems of linear water waves passing over a patch of corrugations, with
boundary or matching conditions at its ends appropriate to the physical setting of
interest. Whenever the wave frequency is near one of the Bragg resonances, the
rate of exponential modulation (Floquet exponent) may be large enough to cause
significant variations of wave amplitude over the possibly fairly short patch, as in our
illustrative normal-mode examples. In nature, multiple parallel sandbars do occur.
They may be primary Bragg resonant with some ocean waves and m > 1 resonant
with some others. The present study of non-erodible bottom corrugations can be
useful in understanding sediment processes and seabed evolution. Yu & Mei (2000b)
showed that Bragg scattering by evolving sandbars can be treated as if the bars were
rigid because the time scale for sediment morphodynamics is much longer than that
of the waves. They found that during the course of sandbar formation all the possible
spatial variations of wave amplitude uncovered in their earlier study of rigid bars (Yu
& Mei 2000a) occurred at different stages of the evolution, as the position of the bar
crests relative to the waves evolves.

Some limitations of the exact theory have been remarked on in HY07, e.g. lack of
effects of dissipation and nonlinearity of the free surface. Nonetheless, the theoretical
results presented here provide some insights into wave interaction with periodic
undulating seabed topography. They can also be of use to those who are interested
in experimental studies of Bragg resonances of water waves.

Support of J. Y. by the US National Science Foundation (Grant CBET-0756271)
and the North Carolina Sea Grant (Grant R/MG-0707) during the period of this
work is gratefully acknowledged.

Appendix
The bottom corrugation defined in (2.4) is not purely sinusoidal, containing

harmonics cos (2nkBx), n= 1, 2, . . .. Here we show that the higher order resonance
addressed in this study is not due to the first-order Bragg resonance by these higher
harmonic components in the bottom profile. Some quantitative differences can be
seen by examining the width of the resonance tongue and the Floquet exponent. We
shall use the case m =2 as an example.

For small ε, the bottom profile (2.4) can be approximated as

hb = εh cos (2kBx) + ε2kBh2 coth (2kBh) [cos (4kBx) − 1] + · · · . (A 1)



Higher order Bragg resonances of water waves 503

The amplitude of the first bottom harmonic is εh, and that of the second harmonic is
ε2kBh2 coth (2kBh). We do not know the exact solution for purely sinusoidal bottom
shapes, but to the lowest order in amplitude we can use the asymptotic theory, which
has been shown to agree well with the exact theory on the slowly varying aspects of
the flows (i.e. propagating modes).

For m =1 Bragg resonance of the water wave by a purely sinusoidal bottom,
the boundaries of the resonance tongue are ωc∓/ωB = 1 ∓ (1/2) (εb), and hence the
width (ωc+ − ωc−)/ωB = εb (cf. HY07, § 4.1). The parameter b is the same as in
(2.8). Thus, to estimate the resonance tongue of m =1 resonance by a bottom shape
given by the second bottom harmonic in (A 1), we identify ωB with ωB2, ε with
ε ′ = ε2kBh coth (2kBh) and b with b′ = kB2h/ sinh kB2h, thus obtaining

ω′
c∓/ωB2 = 1 ∓ 1

2
(ε ′b′) = 1 ∓ 1

2
(εb)2, (A 2)

and hence the width is (ω′
c+ − ω′

c−)/ωB2 = (εb)2. According to the exact theory, the
width of the resonance tongue of m = 2 resonance is also (ωc+ − ωc−)/ωB2 = (εb)2

when ε is small (cf. (3.8)). However, the boundaries are (cf. (3.8))

ωc∓/ωB2 = 1 + 1
2
(εb)2

[
(1 ∓ 1) + (1 − λB4/λB2)

−1
]
. (A 3)

For large kBh, λB4/λB2 � 2, and (A 3) and (A 2) are approximately the same. For small
kBh, however, λB4/λB2 � 4; so ωc−/ωB2 = 1− (1/6) (εb)2 and ωc+/ωB2 = 1+(5/6) (εb)2.

For m =1 resonance by a bottom shape given by the second bottom harmonic in
(A 1), the Floquet exponent is estimated as (cf. (4.1) in HY07)

µ′2 =
(
b′ + 1

2

)−2
(

1
4
(ε ′b′)2 −

[
(λ/λB2)

1/2 − 1
]2

)
.

For λ/λB2 = 1,

µ′2 =
1

4
(εb)4

(
1

2
+

2kBh

sinh 4kBh

)−2

. (A 4)

According to the exact theory, the Floquet exponent for m =2 Bragg resonance is,
from (3.5) and (3.6), for small ε and λ/λB2 = 1

µ2 = (εb)4
(

1

2
+

2kBh

sinh 4kBh

)−2
[
1 −

(
1 +

λB2

λB2 − λB4

)2
]
. (A 5)

For kBh 
 1, the factor 1 − (1 + λB2/ (λB2 − λB4))
2 → 5/9, and for kBh � 1, it

approaches 1. The Floquet exponent µ2 for m =1 Bragg resonance by the second
harmonic alone is nearly two times smaller than that for m =2 resonance by the
actual bottom when kBh is small, and four times smaller when kBh is large.
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